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Abstract—Managing trajectory separation of unmanned air-
craft is critical to ensuring accessibility, efficiency, and safety in
low altitude airspace. The concept of a geo-fence has emerged
as a way to manage trajectory separation. A geo-fence consists
of distance buffers that enclose individual trajectories to identify
a ’keep-in’ region and/or enclose areas that identify ’keep-out’
regions. The ’keep-in’ geo-fence size can be defined as a static
number or calculated as a function of vehicle performance char-
acteristics, state of the airspace, weather, and other unforeseen
events such as emergency or disaster response. Given that the fleet
of Unmanned Aircraft Systems (UAS) operating in low altitude
airspace will be numerous and non-homogeneous, calculating a
’keep-in’ geo-fence will need to balance operational safety and
efficiency. A recently tested UAS Traffic Management (UTM)
prototype used a geo-fence size of 30 meters, horizontally and
vertically, for every operation submitted. The goal of this work is
to determine the feasibility of a generalized, simple algorithm that
calculates geo-fence sizes as a function of vehicle performance and
potential wind disturbances. The resulting geo-fence size could be
smaller or larger because the vehicle performance in the presence
of wind is considered, thus leading to trajectory separation that
is safe and efficient.

In this paper, two simplified methods were developed to
determine the feasibility of calculating a geo-fence as a function
of vehicle parameters and wind information. The first method
calculates the geo-fence using basic vehicle parameters and
wind sensor data in a set of algebraic-geometric equations. The
second method models a generic PID control system that uses
a simplified set of equations of motion for the plant and uses
gain scheduling to account for wind disturbances. It was found
that the Algebraic-Geometric Geo-fence Algorithm provides geo-
fence sizes of approximately 15 meters horizontally and 5 meters
vertically, which is much smaller than the UTM static value
of 30 meters. In the PID Controller Geo-fence Algorithm it
was found that the geo-fence size is further reduced to less
than 5 meters, horizontally and vertically. These results reveal
that implementing geo-fence calculations provide UTM with the
ability to schedule and separate operations based on geofences
that are dynamic to vehicle capability and environment, which
is more efficient than using a single static geo-fence.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are becoming increas-
ingly popular for commercial and governmental applications,
e.g. fighting wildfires, agricultural monitoring, surveillance,
and delivery [1]. NASA initiated UAS Traffic Management

(UTM) research could develop airspace integration require-
ments for these UAS in low altitude airspace [2]. Manag-
ing trajectory separation of unmanned aircraft is critical to
ensuring accessibility, efficiency, and safety in low altitude
airspace. The concept of a geo-fence has emerged as a way to
manage trajectory separation. A geo-fence consists of distance
buffers that enclose individual trajectories to identify a ’keep-
in’ region and/or enclose areas that identify ’keep-out’ regions.
The ’keep-in’ geo-fence size can be defined as a static number
or calculated as a function of vehicle performance character-
istics, state of the airspace, weather, and other unforeseen
events such as emergency or disaster response. Given that
the fleet of UAS operating in low altitude airspace will be
numerous and non-homogeneous, calculating a ’keep-in’ geo-
fence will need to balance operational safety and efficiency.
A recently tested UTM prototype used a geo-fence size of
30 meters, horizontally and vertically, for every operation
submitted. The goal of this work is to determine the feasibility
of a generalized, simple algorithm that calculates geo-fence
sizes as a function of multirotor vehicle performance and
potential wind disturbances so that the geo-fence changes with
the operation. The resulting geo-fence size could be smaller
or larger because the vehicle performance in the presence of
wind is considered, thus leading to trajectory separation that
is safe and efficient.

II. BACKGROUND

In this paper, two simplified methods were developed to
determine the feasibility of calculating a geo-fence as a
function of vehicle parameters and wind information. The first
method calculates the geo-fence using basic vehicle parameters
and wind sensor data in a set of algebraic-geometric equa-
tions. This method was developed based on the prevalence of
simplified equations and kinematic modeling found in traffic
management and path planning literature. These methods
are practical in operational software due to reliability of a
solution. These models can be found in NASA’s Air Traffic
Management trajectory prediction algorithms, with various
fidelity [3], [4], [5]. Path planners for autonomous UAS use
a decomposition approach, where assumptions are made to
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derive simplified kinematic and algebraic equations [6]. This
allows for numerous, fast-time solutions to be generated and
evaluated. McGee and Hedrick [7], [8] demonstrated that a
mapping of the kinematic equations can be used on a fixed
wing vehicles to account for the effects of wind. In this paper,
the first method uses straightforward geometric relationships
and point mass kinematic equations to calculate geo-fence
sizes for multiple different multirotor UAS, as a practical
implementation for operational software.

The second method develops a generalized control system
model for multi-rotor UAS that accounts for winds along the
path. This method was selected to improve the granularity of
simulating trajectory deviations due to wind, while guaran-
teeing a solution. In Pounds et al. [9] the flight dynamics
of a quadrotor are modeled using point mass rigid body
dynamics with a PID controller, that accounts for the effects of
flapping, roll, and pitch damping, but no winds. In Hoffman
et al. [10] a point mass model is implemented with a PID
controller for path tracking and attitude control. The attitude
control is augmented with angular acceleration feedback. In
Raza and Etele [11] and Waslander and Wang [12] the flight
dynamics of a quadrotor, in the presence of wind gusts, is
modeled using a similar methodology to [10]. Additionally, a
comprehensive survey of rotorcraft UAV control methods [13]
identified PID controllers as one of the most successful and
widely used controllers, where its capability can be expanded
via gain scheduling. While many other control algorithms are
described in the survey paper, this work focused initially on
PIDs and low fidelity approaches before developing higher
fidelity approaches. Thus, the second method developed in
this paper models the trajectory path using a simplified rigid
body dynamics model [14] and PID controllers. The inner-loop
controller uses constant gains, while the outer loop controller
uses gain scheduling to adapt to varying wind conditions.
The gain schedule table is determined using the Artificial
Bee Colony (ABC) genetic optimization method [15], [16].
This method was selected because it is a gradient-free search,
immune to problems related to local optima, and the code was
available in open source [17].

Section III of this paper discusses the three different wind
models used in this work, Section IV details the Algebraic-
Geometric Geo-fence Algorithm (AGGA), Section V discusses
the PID Controller Geo-fence Algorithm (PCGA), and Section
VI discusses the results in the context of geo-fence sizing.

III. WIND MODELING

Key to the successful operation of airspace management
is an understanding of the nominal and potentially hazardous
weather patterns that exist within the airspace. This is espe-
cially true at low altitude, where thermal effects and winds
can be unpredictable and potentially catastrophic to vehicle
operations. In this study, three different wind models were
integrated in the geo-fence algorithms. The best available
wind information at the time of this study was acquired
from the NOAA High Resolution Rapid Refresh (HRRR)
model, the California State University-Mobile Atmospheric

Profiling System (CSU-MAPS), and OpenFOAM simulation.
Note that HRRR is a forecasting product, CSU-MAPS is real-
time sensor data of wind at a single location, and OpenFOAM
is a CFD modeling that is time-invariant for a particular
flow condition. It should be noted that, although the geo-
fence algorithms (Method 1 and Method 2) utilize different
wind models, the magnitude of the wind components are
comparative in magnitude.

A. NOAA Wind Data Integration

The National Oceanic and Atmospheric Administration
(NOAA) National Center for Environmental Prediction
(NCEP) provides several forecast products available for down-
load pertaining to different aspects of weather information.
Each product differs based on the following: variables pre-
dicted, forecast horizon, spatial and temporal granularity,
forecast grid, underlying prediction model, and model run
frequency. HRRR offers the highest spatio-temporal resolution
data compared to the other products. The HRRR model runs
once every hour providing a 15 hour forecast with a temporal
resolution of 15 minutes. The grid over the US has a spatial
resolution of 3 km. In addition, the HRRR forecast provides
a 0-hr ahead forecast based on inputs from various sensor
measurements during every model run which is treated as
the ground truth during model validation. The variables used
include wind velocity components at 10m and 80m heights
above ground (AGL).

Depending on the location of the UAV operation, wind
information is extracted from HRRR and assumed to be
constant over each 3km by 3km spatial grid elements. Note
that interpolation is not done over the spatial dimensions;
future research will include this. An illustration of the HRRR
grid is shown in Fig. 1

Fig. 1. Example grid plot

The truth data from June 29, 2016, at UTM test site Reno-
Stead Airport (lat=39.6781,lon-119.876), is plotted in Fig.
2. While HRRR provides 15 minute resolution over a 15
hour forecast window, the truth data is extracted in hourly



increments. Wind velocity components, [u, v], are plotted at
10 and 80 meters AGL from 6AM to 4PM PDT. The vertical
component of wind is not provided in the HRRR data set. The
HRRR data is used in the AGGA.

Fig. 2. Horizontal wind component profiles versus time from HRRR data at
Reno-Stead on June 29th, 2016.

B. California State University-Mobile Atmospheric Profiling
System Data

The CSU-MAPS is a joint facility developed by San Jose
and San Francisco State Universities and funded by the
National Science Foundation [18]. The CSU-MAPS is the
most advanced mobile atmospheric boundary-layer profiling
system in the United States. The system consists of two remote
sensing tropospheric profilers: a scanning Doppler Lidar (Halo
Photonics, Ltd, Streamline 75), and a microwave temperature
and humidity profiler (Radiometrics, Inc., MP3000). Addition-
ally, a mobile meteorological tower, mounted on a dual-axle
trailer, collects wind measurements up to 32 m (106 ft) at 5
altitude levels.

The AGGA uses the CSU-MAPS three-dimensional (3D)
wind data at altitudes of 12 and 32 meters. In Figure 3 the
trend in the wind components over the course of the day is
plotted.

C. OpenFOAM Wind Field

The wind models discussed above are primarily in non-
urban areas, and it was important to develop an understanding
of wind flows within urban areas, e.g. around buildings. Thus,
a computation fluid dynamics (CFD) simulation was run on a
model of a single simplified building, as shown in Figure 4.

This model was based on a wind tunnel experiment and
included windows on the upstream and downstream faces that
allowed cross flow through the building [19]. The open source
CFD solver OpenFOAM version 2.2.2 [20] was utilized along
with its Atmospheric Boundary Layer (ABL) inflow boundary
condition to generate a wind field velocity solution of the
single building model (Figure 5).

Fig. 3. Wind component profile versus time from CSU-MAPS sensor data
on August 31st, 2015

Fig. 4. Building geometry and volume.

Fig. 5. Atmospheric altitude versus the inflow velocity at the ABL inlet.

The ABL boundary condition models the incoming velocity
and turbulence profiles that result from the wind flowing over
upstream distances and obstacles. Required boundary condi-
tion inputs include friction velocity, flow direction, ground nor-
mal direction, and surface roughness height [20]. Turbulence
modeling in OpenFOAM’s ABL boundary condition is based
on the k-epsilon turbulence model [21]. OpenFOAM was
chosen because it has functionality to model the Atmospheric
Boundary Layer, which plays a large role in characterizing the
wind field at low altitude.

OpenFOAM is a cell-centered unstructured CFD solver. The
commercial grid generation software Pointwise was used to
generate a mixed-element prismatic and tetrahedral volume
mesh around the building geometry. Scalar solution values
including x, y, and z components of velocity are saved to
locations at the center of every cell of the volume mesh. Open-
FOAM solves the 3D incompressible Navier-Stokes equations,



which provides velocity vectors at each of the discretized
points in the OpenFOAM volume solution, both in and around
the building.

Fig. 6. Cross sectional view of the wind field solution from OpenFOAM

Figure 6 shows the wind vectors corresponding to a cross
section of the flow volume at a specific altitude, where the
spectrum of red to blue wind vectors indicate high speed and
low speed respectively. The 3D wind field generated here iss
used in the PCGA.

IV. METHOD 1: ALGEBRAIC-GEOMETRIC GEO-FENCE
ALGORITHM

A. Methodology

The first method is a simplistic approach that guarantees
a geo-fence solution can be found every time and for any
multirotor vehicle operation. The vehicle parameters of interest
for the AGGA are maximum vehicle airspeed (Vmax) and
the estimated time from detection of disturbance to vehicle
recovery (tcontrol). Since this variable was not available from
the UTM vehicle partners, tcontrol was set to a constant value
of 1 second based on the settling/response times for multirotors
documented in references [11], [22], [23], [24], [25], [26],
[27]. The maximum vehicle speed for NASA UTM vehicle
partners operating multirotor vehicles were used in this study.
All the values in Table I were reported to the NASA UTM
project by the vehicle partners.

TABLE I
VEHICLES AND CORRESPONDING MAXIMUM VELOCITY.

Vehicle Vmax[m/s]
UAV1 8.9
UAV2 20.0
UAV3 18.0
UAV4 24.6
UAV5 17.9
UAV6 18.0
UAV7 10.3
UAV8 15.6
UAV9 13.8
UAV10 17.9

The geo-fence size is defined by a horizontal (dhorz) and
vertical (dvert) distance (Fig. 7), where dvert is the maximum
change in vehicle altitude (+/-). In order to determine these
distances, the vehicle is considered a point mass with a veloc-
ity and heading. The heading is determined by the directional

path from one waypoint to another (Fig. 7). The waypoints
are defined by longitude (θ), latitude (φ), and altitude (h).
The heading (ψ) changes with each waypoint pair, e.g. 1 to 2,
2 to 3, etc.

Fig. 7. Flight plan submitted by an operator requesting airspace with assigned
geo-fence.

The effect of wind on the vehicle position is a function of
the wind velocity (2) to the current vehicle velocity (1).

~VUAS = Vmax cos γ cosψ î+

Vmax cos γ sinψ ĵ +

Vmax sin γ k̂ (1)

~Vwind = U î+ V ĵ +W k̂ (2)

~Vtotal,AGGA = ~VUAS + ~Vwind (3)

The UTM project has two test sites (at Crows Landing in
Northern California and at Reno-Stead Airport in Nevada),
for which HRRR wind information was extracted. The worst
case (maximum) horizontal wind components were determined
from the HRRR data. Specifically, the maximum winds at nine
points on the HRRR grid, at 10 meters and 80 meters altitude,
were used for each test site. The vertical wind component
required special treatment, since HRRR data does not include
this wind component. During the UTM flight tests in 2015, the
CSU-MAPS facility was deployed at Crows Landing, where
3D wind data was collected at altitudes of 12 and 32 meters.
This data was used to calculate the average ratio of the vertical
wind component to the total wind magnitude (4). Using this
factor, an analytical relationship was derived to determine the
vertical wind component (5).

nwind =

[
W√

U2 + V 2 +W 2

]
CSU−MAPS

(4)

W = nwind

√
[U2 + V 2]HRRR

1− n2wind
(5)



Fig. 8. Wind components derived from HRRR and CSU-MAPS data accord-
ing to the maximum wind condition.

The final wind component values estimated, at each grid
point and test site are plotted in Figure 8.

It is assumed that the vehicle’s flight path angle (γ) is zero
and that any changes in the vehicle’s altitude is due to the
vertical wind component. This leads to a geometric equation
that determines an induced flight path angle 6 as a function
of the vertical wind, W . This value is then input into (7).

γwind = arctan
W

Vmax cosψ + U
(6)

The new position of the vehicle can now be found by
integrating the kinematic equations of motions (7) - (9) over
one time step that is equivalent to tcontrol.

ḣ = Vtotal sin γ (7)

θ̇ =
Vtotal cos γ sinψ

R cosφ
(8)

φ̇ =
Vtotal cos γ cosψ

R
(9)

The new position of the vehicle is as follows:

dvert = tcontrol(Vtotal sin γwind) (10)

θnew = tcontrol
Vtotal sinψ

R cosφold
+ θold (11)

φnew = tcontrol
Vtotal cosψ

R
+ φold (12)

Where Vtotal is the magnitude of ~Vtotal,AGGA and R is the
radius of the Earth. The new values of longitude and latitude
represent the updated location of the vehicle due to displace-
ment from the horizontal wind. Given the intended flight plan,
the distance of this new location from a point perpendicular to
the flight plan is calculated using the haversine equation (13).
This distance is the horizontal geofence, dhorz . Note that the
subscript ’fp’ indicates the point along the flight plan that is
perpendicular to the new vehicle location.

The geo-fence, [dhorz, dvert], is calculated for each vehi-
cle/flight plan by averaging the intermediate geo-fence dis-
tances at each HRRR grid point.

B. Results

As expected, the results show that the geo-fence size is
proportional to the velocity and wind magnitude for a con-
stant tcontrol. Vehicles with higher speeds will have larger
geo-fences. Table II and III show that the horizontal geo-
fence sizes for each multirotor, are within 1 - 2 meters of
each other for wind information at 10m and 80m altitude.
However, the vertical geo-fence for UAV4 (see Table III),
corresponding to the Reno-Stead Airport wind information at
10m, is almost 4 meters larger than the other vertical geo-
fences. This difference decreases to approximately 2 meters for
wind information at 80m altitude. These results indicate some
important conclusions regarding the feasibility of varying geo-
fences. First, a simple algorithm that accounts for vehicle and
wind information reduced the geo-fence size by approximately
half the horizontal and vertical geo-fence size used by UTM
of 30 m. Second, there is an operational advantage to simple
methods that always guarantee a solution. Third, the size
of the geo-fence will change with altitude due to changing
terrains that generate highly variable winds. Thus, geo-fence
algorithms should incorporate 3D wind fields that changes
with time and altitude.

TABLE II
GEO-FENCE SIZES CORRESPONDING TO HRRR WIND DATA FOR CROW’S

LANDING ON JUNE 29TH, 2016.

Altitude = 10m Altitude = 80m
Vehicle Vmax[m/s] dhorz [m] dvert[m] dhorz [m] dvert[m]
UAV1 8.9 11.5857 4.5194 11.9428 4.0280
UAV2 20.0 12.8057 6.1315 13.1876 5.4933
UAV3 18.0 12.5846 5.7713 12.9639 5.1279
UAV4 24.6 13.3174 6.9510 13.7037 5.9792
UAV5 17.9 12.5702 5.7469 12.9493 5.1136
UAV6 18.0 12.5835 5.7694 12.9628 5.1268
UAV7 10.3 11.7358 4.7936 12.0982 4.2364
UAV8 15.6 12.3222 5.3061 12.6978 4.9363
UAV9 13.8 12.1238 4.9384 12.4959 4.7110
UAV10 17.9 12.5724 5.7507 12.9516 5.1158

TABLE III
GEO-FENCE SIZES CORRESPONDING TO HRRR WIND DATA FOR

RENO-STEAD AIRPORT ON JUNE 29TH, 2016.

Altitude = 10m Altitude = 80m
Vehicle Vmax[m/s] dhorz [m] dvert[m] dhorz [m] dvert[m]
UAV1 8.9 11.9555 5.2231 12.0098 5.7588
UAV2 20.0 13.1603 7.5511 13.1818 6.9278
UAV3 18.0 12.9414 6.9430 12.9666 6.3297
UAV4 24.6 13.6680 9.1401 13.6825 7.3194
UAV5 17.9 12.9271 6.9076 12.9526 6.2925
UAV6 18.0 12.9403 6.9402 12.9655 6.3268
UAV7 10.3 12.1032 5.4294 12.1513 5.6056
UAV8 15.6 12.6818 6.4051 12.7124 5.7873
UAV9 13.8 12.4858 6.0592 12.5213 5.4380
UAV10 17.9 12.9293 6.9130 12.9548 6.2982

V. METHOD 2: PID CONTROLLER GEO-FENCE
ALGORITHM

A. Methodology

In contrast to the AGGA, the PCGA attempts to estimate
vehicle deviations from the nominal trajectory due to wind, by



dhorz = 2R arctan

√
sin2 φnew−φfp

2 + cosφfp cosφnew sin2 θnew−θfp

2√
1− sin2 φnew−φfp

2 + cosφfp cosφnew sin2 θnew−θfp

2

(13)

simulating the vehicle’s control dynamics. The size of these
deviation, horizontally and vertically, are then used to define
the size of the geo-fence. Given the huge variety of UAVs,
modeling each control system would be prohibitive. Therefore,
a generalized and simple trajectory prediction model was
developed such that the model, 1) does not rely on detailed
knowledge of the control system and 2) predicts the UAV flight
dynamics in the presence of urban winds. Requirements 1) and
2) are met by implementing a simplified set of equations of
motion with a gain scheduled PID controller. The gain table
was determined using a gradient-free genetic optimizer that is
immune to problems related to local optima. This guaranteed
a gain solution for every run and enabled the incorporation of
wind field compensation in the control system. The following
subsections describe the methodology.

1) Quadrotor Dynamics: Since the quadrotor is considered
to be under-actuated, due to its four rotors controlling six
degrees-of-freedom, some level of the dynamics in the plant
must be modeled in the control design. The plant model
assumes that the quadrotor is a point mass and that the
equations of motion are derived based on rigid body dynamics
and kinematics. A summary of the derivation for the equations
of motion (EOMs) that describe the dynamics of a symmetric
quadrotor follows below. For a detailed write-up of this
derivation, see [14].

The two major reference frames are the vehicle-fixed body
frame (B) and the Earth-fixed North-East-Up (NEU) inertial
frame. The body-frame is attached to the center of gravity of
the quadrotor. The NEU frame is attached to the location of the
ground station tracking the vehicle. Upon determination of the
transformation matrix from the B axis frame to the NEU axis
frame, via the Euler angles, the body velocities and angular
rates are transformed into the NEU axis frame. Then, Newton’s
Laws for translational and rotational motion are used to derive
the six degree of freedom EOMs, see [14] for full set of
equations. For implementation into the control system design,
it is assumed that the quadrotor exhibits spherical aerodynamic
characteristics (i.e., constant drag coefficient in all directions)
and that body lift and other nonlinear aerodynamic effects are
negligible. The sum of the forces (14) on the vehicle include
thrust, drag (16), and gravity. The torques on the vehicle are a
function of the force on each motor and the distance of each
motor from the center of mass, (17) - (19).

~F = (−mg sin θe +Dx)̂iB +

(mg cos θe sinφe +Dy)ĵB +

(−mg cos θe cosφe + Ft +Dz)k̂B (14)

~Vrel,sqr = V 2
rel,xîB + V 2

rel,y ĵB + V 2
rel,z k̂B (15)

~D = −1

2
CDArefρ~Vrel,sqr (16)

τφe = l(FL − FR) (17)

τθe = l(FF − FB) (18)

τψe
= FtK = K(−FF + FR − FB + FL) (19)

Where ~D is the drag acceleration vector, CD is the drag
coefficient, Aref is the reference area, ρ is the density of air
at sea level, and K is a constant parameter for torque. The
small angle approximation is applied to linearize the EOMs
while the yaw angle is assumed to be zero. These assumptions
yield a simplified set of governing equations (20) - (25).

ẍ = − cosφe sin θe
Ft
m

+
Dx

m
(20)

ÿ = sinφe
Ft
m

+
Dy

m
(21)

z̈ = −g + cosφe cos θe
Ft
m

+
Dz

m
(22)

φ̈e =
(FL − FR)l

Jx
(23)

θ̈e =
(FF − FB)l

Jy
(24)

ψ̈e =
(−FF + FR − FB + FL)K

Jz
(25)

where [x, y, z] are position, φe is the roll angle, θe is the
pitch angle, ψe is the yaw angle, Ft is total thrust from
the rotors, FL,R,F,B are the resultant forces from each rotor
(left, right, front, and back), Dx,y,z are the drag forces in the
direction of the relative velocity, g is gravity, m is mass of the
vehicle, l is the distance from the rotor to the vehicle center
of gravity, and Jx,y,z are the moments of inertia. Two dots
above a letter (diaeresis) are used to indicate accelerations.

The set of rotational equations, (23) - (25), are uncoupled
and depends only on the forces generated by the vehicle,
whereas the translational set, (20) - (22), are coupled to the ro-
tational equations. The effect of the wind field on the trajectory
is determined via the drag terms in the translational EOMs.
The wind velocity vector (26) is added to the vehicle velocity
vector and substituted into the drag vector equation. The wind
velocity components are extracted from the OpenFOAM CFD
solution at each point along the trajectory.



~Uwind = uwindîNEU + vwindĵNEU + wwindk̂NEU (26)

Note that the vehicle velocity is in the body axis. Thus, the
wind vector must be transformed from the NEU axis to the
body axis (27), using the transformation matrix RNEUB . The
velocity vector (27) is substituted into the drag equation.

~Vrel = ~Vvehicle +RNEUB
~Uwind (27)

2) Control System Model: The control variables are total
force, pitch angle, and roll angle. The intermediate control
laws for commanded total force, roll angle, and pitch angle
are derived by first treating the left-hand sides of (20) -
(22) as commanded accelerations and then solving for the
commanded total force (thrust) using (22). The newly derived
force equation is substituted into (20) and (21) to determine
the roll and pitch angle commands, (29) and (30) respectively.

F cmdt =
m
(
acmdz + g − Dz

m

)
cosφcmd cos θcmd

(28)

φcmd = arctan

(
acmdy − Dy

m

)
cos θcmd

acmdz + g − Dz

m

(29)

θcmd = arctan
−
(
acmdx − Dx

m

)
acmdz + g − Dz

m

(30)

The variables [ax, ay, az]
cmd are acceleration commands in

the x, y, and z body axis. The final control system diagram is
shown in Figure 9.

Fig. 9. Multirotor control system diagram

For this model, an outer-loop PID controller is used to
reduce steady-state error (er) in reaching a waypoint, and an
inner-loop PD controller is used to reflect the fast attitude
dynamics of multi-rotor vehicles (31).

PID = Kper +Kd
der
dt

+Ki

∫ t

0

erdτ (31)

The inputs to the control system are the desired waypoints
that define the operation, [x, y, z], and the outputs are controls
that drive the equations of motion to generate the desired
trajectory. The inner-loop of the control system in Figure 9
controls attitude; while the outer-loop controls vehicle posi-
tion. The outer-loop system will be used to determine com-
manded accelerations that will in turn determine total thrust

and commanded attitude angles using (28) - (30). The inner-
loop system will take this information and output torques to
achieve an intended orientation. The integrative term, in (31),
will become more influential as error accumulates, driving the
vehicle closer to its intended destination. Additionally, this
term adds to the vehicle’s robustness to wind disturbances
provided there is no degradation in stability.

The control system uses constant gains for the inner-loop
controllers and gain scheduling in the outer loop to adapt to
varying wind conditions. The gain schedule table is determined
using the Artificial Bee Colony (ABC) genetic optimization
method [15], [16]. A diagram from [15] is modified to
illustrate this paper’s implementation of the ABC method in
Figure 10.

Fig. 10. Gain scheduling control diagram with ABC optimization

The design variables in the optimization are the PID gains
for each controller for a given wind magnitude (not for
each wind component). The minimum and maximum wind
magnitudes were extracted from the OpenFOAM wind field
model and gains were determined at each wind condition, in
increments of ∆INCR =

√
3.

[∣∣∣~Uwind∣∣∣
min

: ∆INCR :
∣∣∣~Uwind∣∣∣

max

]
=[

−5
√

3 :
√

3 : 5
√

3
]

(32)

The cost function used to find the gains at each controller
is a function of six parameters and weighting coefficients
(Rj=1:6). These parameters are the position error at the final
waypoint (epos), Integrated Time Absolute Error (ITAE),
Percent Overshoot (%OS), Rise Time (Trise), Settling Time
(Tsettling) and the Number of oscillations in the trajectory
(Nring). The objective function, 33, is the sum of these costs.

Ji=x,y,z = (R1(epos)
2 +R2(ITAE)2 +

R3(%OS)2 +R4Trise +

R5Tsettling +R6Nring)i=x,y,z

J = Jx + Jy + Jz +RTfinal (33)

3) Vehicle and Mission Parameters: The test vehicle for
this simulation is the AscTec Pelican Quadrotor sUAS (As-
cTec) [28]. This vehicle is 0.651m long with a rotor diameter
of approximately 25.4cm and length of 32.5cm. It has a
maximum take-off weight (MTOW) of 1.65kg and a take off



thrust of 36 Newtons. The specifications indicate that this
vehicle can tolerate a wind speed up to 10m/s, but do not
indicate whether this is a sustained wind or gust value. Based
on the assumption of a spherical aerodynamic model, CD is set
to a constant 0.5, with a constant Aref of 0.33 m2. Additional
vehicle parameters can be found in Table IV.

TABLE IV
ASCTEC PELICAN VEHICLE PARAMETERS.

Parameter Value
MTOW 1.65 kg

Fthrust,max 36 N
l 0.32550 m
Jx 0.012434 kg/m2

Jy 0.012434 kg/m2

Jz 0.021969 kg/m2

CD 0.5
Aref 0.33285 m2

Vwind,max 10 m/s

The integrated vehicle and wind field model was tested via
two operational test profiles. The first test profile examined
the vehicle’s resilience to varying wind speeds when flying
through the wake behind the building, Figure 11. The second
test profile examined the vehicle’s resilience to sustained, high
wind speeds when flying near the side of the building, Figure
12.

Fig. 11. Flight plan through the wake behind a building

Fig. 12. Flight plan along corner and side of building

The test profile consists of four segments: 1) Ascent, 2)
Uni-directional Forward Flight, 3) Uni-directional Backward
Flight, and 4) Descent.

B. Results

The first test profile shows that the system is able to main-
tain an altitude of 3 meters and manages to arrive at the final

destination at almost the same time as the no-wind trajectory
(Figure 13). The control system also does exceptionally well at
tracking the desired position with very little deviation from the
no-wind path (Figure 14). Thus, even when the wind field is
constantly varying due to the wake vortices behind the building
(Figure 15), the flight path is robust to the wind variation. This
result shows that the horizontal and vertical geo-fence can be
very small (< 5m).

Fig. 13. Altitude versus time for test profile 1.

Fig. 14. Ground track for test profile 1.

Fig. 15. wind components versus time for test profile 1.

The second test profile shows that the system is able to
maintain an altitude of 3 meters, but arrives at its destination
almost 120 seconds later than the no-wind trajectory (Figure
16). The control system, from a spatial perspective, does
track to the horizontal position with very little deviation from
the no-wind path (Figure 17), resulting in a small horizontal
geo-fence. It should be noted that the constant force of the



wind (Figure 18) on the vehicle exposed a region of poor
performance in the PID, where the vehicle flight time was
significantly larger than the nominal.

Fig. 16. Altitude versus time for test profile 2.

Fig. 17. Ground track for test profile 2.

Fig. 18. wind components versus time for test profile 2.

At this point it is important to understand the reasons for the
poor performance. This will allow for further identification of
control system requirements that ensure robust performance
for accurate geo-fencing and efficient operation. The poor
performance of the controller may be due to the small angle
approximation assumption applied to simplify the model. To
test this, the small angle approximation was relaxed and the
2nd test profile was simulated again.

The resulting altitude profile (Figure 19) shows that the
vehicle arrived at its final destination approximately two
seconds later than in the no-wind condition and that the ground
track deviation (Figure 20) was very small, leading to a geo-
fence assignment that is very small across the operation.

Fig. 19. Altitude versus time for test profile 2 with relaxed small angle
approximation.

Fig. 20. Ground track for test profile 2 with relaxed small angle approxima-
tion.

Some important conclusions can be drawn from these re-
sults. The first is that the performance of even the most basic
control system reveals geo-fence distances, in the horizontal
and vertical, that are smaller than that of the AGGA or those
values used in the UTM prototype. Second, the fidelity of the
flight dynamics model needs to be increase to compensate for
a high sustained wind to provide improved geo-fence sizes.

VI. CONCLUSIONS AND FUTURE WORK

It was found that the AGGA calculates geo-fence sizes of
approximately 15 meters horizontally and 5 meters vertically,
which are smaller than the UTM static value of 30 meters.
In the PCGA it was found that the geo-fence size is further
reduced to less than 5 meters, horizontally and vertically. The
PCGA results revealed that an increased level of fidelity must
be added to accurately simulate vehicle deviations from wind
disturbances. Overall, the results reveal that implementing
geo-fence calculations will provide UTM with the ability to
schedule and separate operations based on vehicle capability
and environment, which is more efficient than using a single
static geo-fence.

Future work should include development of a higher fi-
delity generalized model on four fronts: aerodynamics, flight
mechanics modeling, control system, and urban wind field
modeling. First, the aerodynamics of UAS must be modeled
more accurately such that the effects of the wind disturbance
correctly reflect the aerodynamics in each axis. UAS also
experiences aerodynamic moments and lift depending on the
vehicle’s configuration, e.g. ’+’ or ’x’ configuration. These



forces impact how the control system maintains the vehicle’s
trajectory and stability. Second, UAS will not be limited to the
linear region of operation as higher wind speeds and turbulent
flows will require significant fast-time changes in pitch, roll,
and yaw angles for maintaining flight trajectory. Therefore,
the model must account for gyroscopic and other nonlinear
effects that significantly influence the total dynamics of the
system. Third, the task of dealing with the wide range of
nonlinear aerodynamics and dynamic effects may require a
model of a nonlinear control system. This implementation will
require a trade-off in fidelity since this model will need to be
broadly applicable to different types of UAS, e.g. fixed wing,
multirotors, etc. Finally, fidelity of the urban wind environment
should be increased by including multi-building configurations
and varying the inflow condition. The inflow condition is
the initial condition velocity profile that corresponds to the
prevailing wind speed and terrain.
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